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Abstract

Process analytics is a collection of data-driven techniques for, among others,
making predictions for individual process instances or overall process models. At
the instance level, various novel techniques have been recently devised, tackling
analytical tasks such as the next activity, remaining time, or outcome prediction.
However, there is a notable void regarding predictions at the process model level.
It is the ambition of this article to fill this gap. More specifically, we develop
a technique to forecast the entire process model from historical event data. A
forecasted model is a will-be process model representing a probable description
of the overall process for a given period in the future. Such a forecast helps, for
instance, to anticipate and prepare for the consequences of upcoming process
drifts and emerging bottlenecks. Our technique builds on a representation of
event data as multiple time series, each capturing the evolution of a behavioural
aspect of the process model, such that corresponding time series forecasting
techniques can be applied. Our implementation demonstrates the feasibility of
process model forecasting using real-world event data. A user study using our
Process Change Exploration tool confirms the usefulness and ease of use of the
produced process model forecasts.

Keywords: Process model forecasting, predictive process modelling, process
mining, time series analysis, user study

1. Introduction

The growth in the use of information systems has fuelled a wide range of data
analysis techniques that intend to describe and improve their inner workings.
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Process mining [1] is a fast-growing field in information systems analysis that
encompasses a wide range of techniques performed on event data generated by
these systems, including the visualization, conformance checking, and enhance-
ment of process models that implement business processes in organizations [1].
Process analytics is a subarea that encompasses Predictive Process Monitoring
(PPM) aimed at making predictions for individual process instances or overall
process models [1]. Many PPM techniques have surfaced to support the predic-
tion of the next activity in the process, the remaining process cycle time, and
other goal-oriented process outcomes [2]. These techniques make use of various
predictive architectures, including neural networks [3], stochastic Petri nets [4],
and general classification techniques [5].

PPM techniques, however, typically focus on a short time horizon or a well-
scoped outcome in terms of prediction [5]. Indeed, it is known that the next
activity prediction techniques often perform poorly on long time horizons [6].
This, consequently, limits the range of insights that can be obtained. A process
(model) can change over time, for example, as a response to new regulations,
customer demands, and novel ways of supporting business processes. While a
process outcome can be predicted accurately, this might still obfuscate the un-
derlying drivers for that outcome. Process analysts could benefit from obtaining
a more evolutionary image of the process design [7], including the stability or
change of (parts of) the process model, such as process drifts, that can inform
improvement ideas [8]. At the model level, there is a notable void in terms
of predictive analytics. Many process analysis tasks such as identifying bot-
tlenecks, planning major changes to process-aware information systems, and so
on, require an understanding of the current as-is and the anticipated will-be
processes. A key challenge in this context is the consideration of evolution as
processes are known to be subject to change [9, 7, 10, 11]. A forecast can then
inform the process analyst how the will-be processes differ from the current as-is
processes, thus providing input for decisions on improving the future processes.

This article presents a technique to forecast a process model, a description
of the will-be processes. To this end, we develop an algorithm that builds on
a representation of event data as multiple time series. Each of these time se-
ries captures the evolution of a behavioural aspect of the process model in the
form of directly-follows relations (DFs), such that corresponding time series
forecasting techniques can be applied. The DFs are used widely in process min-
ing as components of Directly-Follows Graphs (DFGs), which are semi-formal
process models, often appealing to practitioners [12]. The latter are widely
used in process mining as a representation for processes and hence are a type
of process model, albeit one without clear-cut execution semantics [12]. Our
implementation on six real-life event logs demonstrates that forecasted models
with medium-sized alphabets (10-30 activities) obtain below 15% mean average
percentage error in terms of conformance of forecasted processes, outperform-
ing the proposed baselines. Furthermore, we introduce the Process Change
Exploration (PCE) system which allows to visualise past and present models
discovered from event logs and compare them with forecasted models. In a user
study, we test and confirm its perceived ease-of-use and usefulness.
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This paper is structured as follows. Section 2 discusses related work and
motivates our work. Section 3 specifies our process model forecasting technique
together with the PCE visualisation environment. Section 4 describes our eval-
uation, before Section 5 concludes the paper.

2. Related work and motivation

In the field of process mining, research on and use of predictive modelling
techniques has attracted much attention in the last five years. PPM techniques
are usually developed with a specific purpose in mind, ranging from the next
activity prediction [13, 3], over remaining time prediction [14], to outcome pre-
diction [15]. For a systematic literature review of the field, we refer the reader
to [16]. Beyond the PPM field, this work is related to previous research on
stage-based process mining [17], in which a technique is presented to decompose
an event log into stages, and work on the detection of time granularity in event
logs [18].

The shift from fine-granular PPM techniques, including next activity, re-
maining time, and outcome prediction, to model-based prediction allows ob-
taining new insights into the global development of the process. Consider the
example of the sepsis event log1 shown in Figure 1. Here it is partitioned into
100 intervals in which an equal number of DF relations occur (referred to below
as ‘equisized’ aggregation, see Section 3.2). The figure contains three subfigures:
The top one shows a DFG constructed over 2 months from the first 50 intervals
of the event log used as a training set to establish the as-is state during the first
half of the system’s execution in terms of frequency. The middle shows a DFG
constructed over 2 months from the next 25 intervals used as a test set show-
ing the actual state of the information system after those initial 50 intervals.
The bottom of the figure shows the forecasted DFG through predictions of its
separate DFs over the same 2 months (forecast horizon of 25) using a GARCH
model (see Section 3.3). Typical process discovery techniques establish visual-
isations over the full event log, i.e., all 100 intervals, while predictive process
modelling techniques typically use increasingly long prefixes of the individual
historical traces to train predictive models using varying amounts of historical
information. The proposed approach allows to combine different historical in-
tervals over all aggregated historical cases to obtain process model forecasting
in the bottom figure, which brings the following unique insights at a glance:

1. The relative frequencies of major activities and DF relations in the DFGs
do not change after the first 50 intervals (actual vs. actual).

2. The forecast errors vary between 21% and 28% for the overall activity
frequencies in the DFGs (actual vs. forecasted).

1https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Figure 1: Directly-follows graphs of the 50 first intervals of the event log, as well as a forecasted
and actual DFG of the 25 next intervals.
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3. The forecast errors for the individual DF relations are lower and vary
between 4% and 16% (actual vs. forecasted).

These results provide insight both in terms of the past and present model,
refer to (1), and the quality of the forecasts between the actual and forecasted
model, refer to (2)–(3). Being able to construct such forecasts allows stake-
holders to make estimates regarding how the overall business process and the
corresponding information system will evolve and allows them to answer ques-
tions such as “Will the number of admitted patients be stable?”, “Will there
be more patients referred to a leucocytes test after a C-Reactive Protein (CRP)
test?”, and “Will as many cases reach the end state as before?”. These ques-
tions can be used to evaluate the overall behaviour of the system and understand
where bottlenecks might arise, activity relations have changed, or the process
might have changed overall.

This motivating example shows that, where process mining in terms of dis-
covery focuses on learning the as-is model to reason about trajectories of future
cases and suggest potential repairs and improvements, process model forecast-
ing allows us to grasp the future state of the full process model in terms of a
will-be model.

Note that, in this example, the aggregated forecasts in the form of activ-
ity frequency prediction (aggregated by calculating the sum of all incoming DF
relations) have higher error rates. To address this issue, an appropriate eval-
uation measure for model-wide evaluation is necessary. A suitable means to
evaluate the forecasts quantitatively is entropic relevance [19]. This measure
captures the quality of the discovered and forecasted DFGs with respect to the
event logs they represent. Entropic relevance penalises the discrepancies in the
relative frequencies of traces recorded in the log and described by the DFG as
it stands for the average number of bits used to encode a log trace using the
DFG, with small values being preferable to large ones. If the entropic relevance
of the forecasted DFG and the actual future DFG with respect to the test log
is the same, then both DFGs represent the future behaviour similarly well. The
entropic relevance of the actual DFG over the 25 intervals of the test set has a
value of 23.12, while the forecasted DFG over the test set has an entropic rele-
vance of 25.35. This means that the forecasted DFG requires 10% more bits to
encode the information of the event log with the forecasted model, which means
it has a 10% percentage error and gives a quantitative, model-wide conformance
evaluation.

Measurement values are not enough to fully reveal the change of behaviour
to the analyst. To this end, we complement the model-level prediction technique
with a visualisation system to enable analysts to understand the forthcoming
changes to the processes. Various process analysis tasks benefit from process
forecasting [7]; most notably process forecasting helps understanding the in-
cremental changes and adaptations that happen to the process model and to
project them into the future. Given the proposed approach focuses on control
flow, these changes are typically driven by process owners aiming at achiev-
ing various properties such as runtime adaption [20], context adaptation [21],
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Figure 2: Directly-follows graphs of the 50 first intervals of the event log, as well as a forecasted
and actual DFG of the 25 next intervals.

or flexibility [22]. In terms of visualisation principles, we follow the “Visual
Information-Seeking Mantra”: overview first, zoom and filter, then details-on-
demand [23]. Thus, we expect the design of our visualisation system to assist
in the following tasks:

T1. Identify process adaptations: The visualisation system should assist
the user in identifying the changes that happen in the process model of
the future with respect to the past;

T2. Allow for interactive exploration: The user should be able to follow
the visual information-seeking principles, including overview first, filtering,
zooming, and details-on-demand.

Figure 2 illustrates how the proposed solution in the form of the Process Change
Exploration (PCE) tool of Section 4.4 allows to address T1 by automatically
visualising the differences between the top and middle, and middle and bottom
DFGs from Figure 1. Red arrows indicate how the older model’s DFs have de-
creased, while green arrows indicate how the older model’s DFs have increased.
For example, the number of DF occurrences between activities ‘Leucocytes’ and
‘LacticAcid’ increased from 66 to 72 (green arrow 66 → 72) between 01/04 and
01/08 (top of Figure 2).
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Forecasting entire process models provides a new perspective on predictive
process monitoring. The forecast horizon is substantially longer as compared
to what existing next-activity prediction models can achieve. Moreover, where
the next activity and related PPM techniques have a strong case-level focus, a
forecast at the model level provides a more comprehensive picture of the future
development of the process.

3. Process model forecasting

This section outlines how time series of directly-follows relationships are ex-
tracted from event logs as well as how they are used to obtain process model
forecasts with a range of widely-used forecasting techniques. Finally, the visu-
alisation of such forecasts is introduced.

3.1. From event log to directly-follows time series

An event log L contains the recording of traces σ ∈ L which are sequences
of events produced by an information system during its execution. A trace
σ = ⟨e1, ..., e|σ|⟩ ∈ Σ∗ is a finite sequence over the alphabet of activities Σ which
serves as the set of event types. Directly-follows relations between activities
in an event log can be expressed as counting functions over activity pairs >L:
Σ×Σ → N so >L (a1, a2) counts the number of times activity a1 is immediately
followed by activity a2 in the event log L. Directly-follows relations can be
calculated over all traces or a subset of subtraces of the log. Finally, a Directly-
Follows Graph (DFG) of the process then is the weighted directed graph with
the activities as nodes and DF relations as weighted edges, i.e., DFG = (Σ, >L).

In order to obtain forecasts regarding the evolution of the DFG we construct
DFGs for subsets of the log. Many aggregations and bucketing techniques exist
for next-step, performance, and goal-oriented outcome prediction [3, 5, 17], e.g.,
predictions at a point in the process rely on prefixes of a certain length, or
particular state aggregations [24]. In the forecasting approach proposed here,
we integrate concepts from time-series analysis. Hence, the evolution of the
DFGs is monitored over intervals of the log where multiple aggregations are
possible:

� Equitemporal aggregation: each sublog Ls ∈ L of interval s contains a
part of the event log of some fixed time duration. This can lead to sparsely
populated sublogs when the events’ occurrences are not uniformly spread
over time; however, it is easy to apply on new traces.

� Equisized aggregation: each sublog Ls ∈ L of interval s contains a part
of the event log where an equal amount of DF pairs occurred which leads
to well-populated sublogs when enough events are available.

Tables 1 and 2 exemplify the aggregations. These aggregations are useful for
the following reasons. First, an equisized aggregation, in general, has a higher
likelihood of the underlying DFs approaching a white noise time series which

7



is required for a wide range of time series forecasting techniques [25]. Second,
both offer different thresholds at which forecasting can be applied. In the case
of the equisized aggregation, it is easier to quickly construct a desired number of
intervals by simply dividing an event log into the equisized intervals. However,
most time series forecasting techniques rely on the time intervals being of equal
duration which is embodied into the equitemporal aggregation [26]. Time series
for the DFs >Ta1,a2

= ⟨>L1
(a1, a2), . . . , >Ls

(a1, a2)⟩,∀a1, a2 ∈ Σ × Σ can be

obtained for all activity pairs where
⋃Ls

L1
= L by applying the aforementioned

aggregations to obtain the sublogs for the intervals.

Case ID Activity Timestamp

1 a1 11:30
1 a2 11:45
1 a1 12:10
1 a2 12:15

2 a1 11:40
2 a1 11:55

3 a1 12:20
3 a2 12:40
3 a2 12:45

Table 1: Example event log with 3
traces and 2 activities.

DF Equitemporal Equisized

<Ls (a1, a1) (0,1,0) (1,0,0)
<Ls (a1, a2) (1,1,1) (1,1,1)
<Ls (a2, a1) (0,1,0) (0,1,0)
<Ls (a2, a2) (0,0,1) (0,0,1)

Table 2: An example of using an interval of 3
used for equitemporal aggregation (75 minutes
in 3 intervals of 25 minutes) and equisized in-
tervals of size 2 (6 DFs over 3 intervals)). Note
that these aggregations are ordered based on
the timestamp of the second activity.

An overview of the full pre-processing is given in Figure 3.

3.2. From DF time series to process model forecasts

The goal of process model forecasting is to obtain a forecast for future DFGs
by combining the forecasts of all the DF time series. To this purpose, we propose
to use time series techniques to forecast the DFG at time T +h given time series

up until T D̂FGT+h = (Σ, {>̂T+h|Ta1,a2
|a1, a2 ∈ Σ × Σ}) for which various

algorithms can be used. In time series modelling, the main objective is to
obtain a forecast ŷT+h|T for a horizon h ∈ N based on previous T values in the
series (y1, ..., yT ) [25]. For example, the naive forecast simply uses the last value
of the time series T as its forecast ŷT+h|T = yT . An alternative naive forecast

uses the average value of the time series T as its forecast ŷT+h|T = 1
T Σ

T
i yi.

A choice exists between approaching DFGs as a multivariate collection of DF
time series, or treating each DF separately. Traditional time series techniques
use univariate data in contrast with multivariate approaches such as Vector Au-
toRegression (VAR) models, and machine learning-based methods such as neural
networks or random forest regressors. Despite their simple setup, it is debated
whether machine learning methods necessarily outperform traditional statistical
approaches. The study in [27] found that this is not the case on a large number
of datasets and the authors note that machine learning algorithms require signif-
icantly more computational power. This result was later reaffirmed, although it
is noted that hybrid solutions are effective [28]. For longer horizons, traditional
time series approaches still outperform machine learning-based models. Given
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Figure 3: Overview of the PMF setup for equisized aggregation.

the potentially high number of DF pairs in a DFG, the proposed approach uses
a time series algorithm for each DF series separately in a univariate setting, as
well as in a multivariate setting. VAR models allow for the latter, but require
a high number of intervals (at least as many as there are directly-follows times
series times the lag coefficient). To estimate all parameters of all the time series
despite their potentially strong performance can result in unstable performance
and estimation of the parameters [29, 30]. Machine learning models could poten-
tially leverage interrelations between the different DFs but again would require
a training set way larger than typically available for process mining to account
for dimensionality issues due to the potentially high number of DFs. Therefore,
in this paper, traditional time series approaches are chosen and applied to the
univariate DF time series, with at least one observation per sublog/time interval
present.
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Finally, the impact of the number of intervals the log is divided in can
strongly impact results and also relate to the fact whether there is an impact of
underlying drifts [10]. With fewer intervals, the leaps in time series signals might
become overwhelming, while too many intervals can stretch out the signal such
that it does not contain enough information for time series to extract any useful
trend into the future. Indeed, time series analysis concepts such as smoothing
and differencing can resolve both to a certain extent as will be illustrated in
Section 3.3, even though they do not fully eliminate the impact of the number
of intervals on results.

3.3. Time series approaches

A wide array of other forecasting techniques exist, ranging from simple mod-
els such as naive forecasts over to more advanced approaches such as expo-
nential smoothing and auto-regressive models. Autoregressive, moving aver-
ages, AutoRegressive Integrating Moving Average (ARIMA), and varying vari-
ance models make up the main families of traditional time series forecasting
techniques[25]. Many also exist in a seasonal variant due to their application in
contexts such as sales forecasting.

The Simple Exponential Smoothing (SES) model uses a weighted average of
past values whose importance exponentially decays as they are further into the
past according to a smoothing parameter α, where the Holt’s models introduce
a trend in the forecast:

ŷt+h|t = lt

with lt the smoothing equation

lt = αyt + (1− α)lt−1

The Holt’s and Holt-Winters’ model (HW) are an extension to SES model by
adding trend and trend and seasonality effects respectively. The additive HW
model (i.e. the seasonal component is additive to the trend and not multiplica-
tive) can be formalised as follows:

ŷt+h|h = lt + hbt + st+h−m(k+1)

with
lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

where bt is the trend component and st is the seasonal component with respective
smoothing parameters β and γ. Exponential smoothing models often perform
very well despite their simple setup [27]. ARIMA models are based on auto-
correlations within time series. They combine auto-regressions with a moving
average over error terms. It is established by a combination of an AutoRegressive
(AR) model of order p and a Moving Average (MA) model of order q. An AR(p)
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model uses the past p values in the time series and to apply a regression over
them as follows:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt

with c the intersect prediction, and ϵt the error term. An MA(q) model regresses
the forecast errors as follows:

yt = c+ ϵt + θ1ϵt−1 + · · ·+ θqϵt−q

Given the necessity of using a white noise series for AR and MA models,
data is often differenced to obtain such series [25], with a differenced observation
written y

′
. ARIMA models then combine both AR and MA models where the

integration occurs after modelling, as these models are fitted over differenced
time series:

y
′
= c+ ϕ1y

′

t−1 + · · ·+ ϕpy
′

t−p + θ1ϵt−1 + · · ·+ θqϵt−q + ϵt

ARIMA models are considered to be one of the strongest time series mod-
elling techniques [25]. An extension to ARIMA, which is widely used in econo-
metrics, are the (Generalized) AutoRegressive Conditional Heteroskedasticity
((G)ARCH) models [31]. These models relax the assumption that the variance
of the error term has to be constant over time, and rather model this variance
as a function of the previous error term. For AR-models, this leads to the use
of ARCH-models, while for ARMA models GARCH-models are used as follows.
An ARCH(q) model captures the change in variance by allowing it to grad-
ually increase over time or to allow for short bursts of increased variance. A
GARCH(p, q) model combines both the past values of observations and the past
values of variance:

yt = x
′

tb+ ϵt

with ϵt ∼ N (0, σ2
t ) and

σ2
t = ω + θ1ϵ

2
t−1 + · · ·+ θ2t−q + ϕ1σ

2
t−1 + · · ·+ ϕpσ

2
t−p

Note how the differenced observations of the AR part are replaced by the error
variance σ. (G)ARCH models often outperform ARIMA models in contexts
such as the forecast of financial indicators, in which the variance often changes
over time [31]. In general, we can regard linear SES models as a subset of
ARIMA models, where (G)ARCH models are specializations of ARIMA models
that can be regarded as increasingly complex and better capable of modelling
particular intricacies in the time series. However, the success of different models
for forecasting purposes does not depend on their complexity, and the most
suitable technique is mainly determined by performance on training and test
sets.

A multivariate generalisation of autoregressive models exists in the form of
vector autoregressions. Such regressions are comprised of a forecast per time
series present which is made out of an autoregression for a particular lag l with
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all time series present in the model, for example for two time series and a lag of
1:

y1,t = c1 + ϕ11,1y1,t−1 + ϕ12,1y2,t−1 + e1,t

y2,t = c2 + ϕ21,1y1,t−1 + ϕ22,1y2,t−1 + e2,t

where e1,t and e2,t are white noise processes that can be correlated. e11,1 is the
effect of time series 1 on itself at lag 1, and e1,2 is the effect of time series 2 on
time series 1 at lag 1.

This allows the inference of an integrated model where the correlations over
time between time series is used to estimate the coefficients of the model which
typically happens by equation-by-equation maximum likelihood estimation us-
ing ordinary least squares [32]. Given that there are at least as many parameters
as the number of time series times the lag, the number of parameters to be es-
timated grows quickly which impedes calculability as the covariance matrix of
coefficients becomes singular [33]. Forecasts are obtained recursively given each
time series has lag coefficients in every equation of the model.

3.4. Process change exploration

In Sections 3.1 and 3.2 we described the approach for forecasting process
models. To that end, gaining actual insights from such forecasted values remains
a difficult task for the analyst. This section sets off to present the design of a
novel visualisation system to aid analysts in the exploration of the event logs
and their corresponding (forecasted) discovered process models.

Following the user tasks T1 and T2 from Section 2, we designed a Process
Change Exploration (PCE) system to support the interpretation of the process
model forecasts. PCE is an interactive visualisation system that consists of
three connected views.

Adaptation Directly-Follows Graph (aDFG) view. This is the main
view of the visualisation that will show the model of the process. In order to
accomplish task T1, we modify the DFG syntax. To display the process model
adaptation from time range Ti0 − Tj0 , i0 < j0, to Ti1 − Tj1 , i1 < j1, we display
the union of the process models of these regions, annotating the nodes and
edges with the numbers of both ranges. We colour the aDFG as follows: we
use colour saturation to show the nodes with higher values. We colour edges
with a diverging saturation (red-black-green) schema. This colouring applies
red colour to edges that are dominant in the Ti0 − Tj0 range, and green if edges
are dominant in the Ti1 − Tj1 range, otherwise the edge colour is close to black.
For colouring edges, we reused the idea of the three colour schema from [34].

Timeline view with brushed regions. This view represents the area
chart graph that shows how the number of activity executions changes with
time. The colour of the area chart is split into two parts, one for the actual data
and the other to show the time range of forecasted values. Analysts can brush
one region in order to zoom in, creating one region of interest Ti0, −Tj0 , i0 < j0
that is displayed on the DFG. Analysts can also brush two regions of the area
chart to select two time ranges, updating the DFG to the aDFG representation.
The brushed regions are coloured accordingly to the schema for colouring aDFG
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transitions. The earlier brushed region is coloured in red, while the second one
is coloured in green.

Activity and path sliders. We adopt two sliders to simplify the DFG [35]
and the aDFG for detailed exploration of the models.

Based on the described views, we conjecture that the analyst can accomplish
tasks T1 and T2 with ease.

4. Implementation and evaluation

In this section, an experimental evaluation over six real-life event logs is
reported. The aim of the evaluation is to measure to what extent the forecasted
DFG process models are capable of correctly reproducing actual future DFGs
in terms of allowing for the same process model behaviour. To this end, we
benchmark the entropic relevance of the actual against that of the forecasted
DFG, as discussed in Section 2. This is done for various parts of the log, i.e.
forecasts for the middle time spans of the event logs up to the later parts of
the event log to capture the robustness of the forecasting techniques in terms of
the amount of data required to obtain good results for both the equisized and
equitemporal aggregation. In Subsection 4.4 the implementation of the Process
Change Exploration tool is discussed, followed by the results of a user study on
this tool verifying its perceived usefulness and ease-of-use in Section 4.5.

4.1. Re-sampling and test setup

To obtain training data, time series are constructed by specifying the number
of intervals (i.e., time steps in the DF time series) using either equitemporal or
equisized aggregation, as described in Section 3.1. Time series algorithms are
parametric and sensitive to sample size requirements [36]. Depending on the
number of parameters a model uses, a minimum size of at least 50 steps is
not uncommon. However, typically, model performance should be monitored
at a varying number of steps. In the experimental evaluation, the event logs
are divided into 100 time intervals with a varying share of training and test
intervals. A constant and long horizon of length 25 is used meaning all test sets
contain 25 intervals, but the training sets are varied from ts = 25 to ts = 75
intervals; the forecasts progressively target the forecast of intervals 25-50 (the
second quarter of intervals) over to 75-100 (the last quarter of intervals). This
allows us to inspect the difference in results when only a few data points are
used, or data points in the middle or towards the end of the available event data
are used.

A model from each time series family discussed in Section 3.3 is selected,
i.e., a Holt Winter’s model (HW) for exponential smoothing, an autoregressive
model (AR), an ARIMA model, a GARCH model, and a VAR model. For
each of these models, the best-performing parameters were retained resulting in
the use of AR(2), ARIMA(2,1,2), GARCH(1), and a VAR(1). Besides, a naive

model (NAV) in the form of an average forecast is used where ŷT+h|T =
ΣT

i=1yi

T
as a simple baseline.
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Resampling is applied based on a 10-fold cross-validation constructed follow-
ing a rolling window approach for all horizon steps h ∈ [1, 25] (i.e. the number of
steps forecasted ahead) where a recursive strategy is used to iteratively obtain
a forecast ŷt+h|t+h−1 where t is 25, 50, and 75 to obtain forecasts up til time
steps 50, 75, 100, hence (y1, . . . , yt, . . . , ŷt+h−1) [37]. The cross-validation builds
ten training sets of length ts which range from (y1, . . . , yt−h−f ) and 10 test sets
which range from (yt−h−f+1, . . . , yt−f ) with f ∈ [0, 9] the fold index [38]. While
direct strategies with a separate model for every value of h can be used as well
and avoid the accumulation of error, they do not take into account statistical
dependencies for subsequent forecasts.

Six often-used, publicly available event logs are used: the BPI challenge of
20122, 20173, and 20184, the sepsis cases event log, an Italian help desk event
log5, and a Road Traffic Fine Management Process log (RTFMP) event log6.
Each of these logs has a diverse set of characteristics in terms of case and activity
volume and average trace length, as shown in Table 3.

Event log # cases # activities Average trace length

BPI 12 13,087 36 20.02
BPI 17 31,509 26 36.83
BPI 18 43,809 170 57.39
Sepsis 1,050 16 14.49
RTFMP 150,370 11 3.73
Italian 4,580 14 4.66

Table 3: Overview of the characteristics of the event logs used in the evaluation.

An example of applying the equisized or equitemporal aggregation to the
RTFMP event log with 100 intervals results in the DF time series of Figure
4, where the DF occurrences of the most frequently occurring activity pair is
included. For the equisized aggregation, the number of DFs is indeed relatively
stable over the log’s timeline where for the equitemporal aggregation a noticeable
decline of DF pairs is visible towards the end of the series which is due to
the fact we only consider complete cases. The latter is done in order to avoid
mismatches between beginning and end points in the DFGs as we want to retain
a (relatively) sound DFG in every interval. This phenomenon is typical in event
logs, as processes usually have particular endpoint activities, but can also be
due to the unequal distribution of events over the event log’s timeline.

There are a few considerations concerning the DF time series in these event
logs. Firstly, some of the event logs contain a warm-up and cool-down phase
where the DF time series are ramping up and slowing down. The equitemporal
aggregation can suffer from event logs in which events do not occur frequently
throughout the complete log’s timespan. For instance, the sepsis log’s number

2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
4https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
5https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
6https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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(a) Most common DF - equisize (b) Most common DF - equitemp

Figure 4: Example of the DF time series of the most frequently occurring activity pair of the
RTFMP log.

of event occurrences tails off towards the end which can be alleviated by pre-
processing (not done here to remain consistent over the event logs). Secondly,
suppose the level of occurrences of the DF pairs is low and close to zero. In
that case, the series might be too unsuitable for analysis using white noise series
analysis techniques that assume stationarity, i.e., for the lags to be identically
and independently distributed with a zero mean [32]. Autoregressive models,
including AR, ARIMA, VAR, and GARCH assume stationarity, but exponential
smoothing models such as HW does not. Ideally, every time series should be
evaluated using a stationarity test such as the Dickey-Fuller unit root test [39],
and an appropriate lag order established for differencing to ensure a white noise
process is used for training. Furthermore, for each algorithm, especially for
ARIMA-based models, (partial) auto-correlation has to be established to obtain
the ideal p and q parameters. However, for the sake of simplicity and to avoid
solutions where each activity pair has to have different parameters, various
values were used for p, d, and q and applied to all DF pairs where only the
best-performing are reported below for comparison with the other time series
techniques as discussed earlier.

4.2. Results

All pre-processing was done in Python with a combination of pm4py7 and
the statsmodels package [40]. The code is publicly available8.

To get a grasp of the forecasting performance in combination with the ac-
tual use of DFGs (which are rarely used in their non-aggregated form [12]) we
present the mean absolute percentage error (MAPE) between the entropic rel-
evance of the actual and forecasted DFGs at both full size, at 50%, and 75%

7https://pm4py.fit.fraunhofer.de
8https://github.com/JohannesDeSmedt/pmf
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BPI12 sepsis RTFMP
aggregation intervals technique mean std min max mean std min max mean std min max

equisize 50

VAR 88.07 6.91 73.78 101.03 85.46 10.87 63.97 111.84 358.26 674.74 97.95 3101.67
ar2 10.63 5.24 4.04 42.10 68.22 14.42 36.83 116.17 381.40 982.03 7.30 5502.33
arima212 11.08 5.53 3.88 49.39 67.46 14.36 40.43 116.81 293.57 934.19 7.59 5893.36
garch 11.47 2.91 4.45 18.60 67.99 14.18 38.89 116.48 357.39 1085.66 6.15 5849.74
hw 8.61 2.32 3.78 14.13 63.91 13.55 38.72 115.55 397.46 1156.50 5.91 7596.44
nav 9.74 2.80 4.30 18.52 62.62 13.21 37.46 110.80 290.45 946.94 7.33 5641.56

equisize 75

VAR 89.21 8.56 75.95 108.16 86.98 6.45 75.51 103.85 277.55 505.87 114.72 2673.45
ar2 8.45 1.95 4.96 12.53 60.80 12.14 33.46 88.77 104.93 337.42 10.68 1790.98
arima212 10.60 4.32 4.66 33.35 60.07 13.06 35.08 92.05 104.42 338.38 9.04 1878.87
garch 8.60 1.96 5.01 12.47 62.07 12.47 39.21 89.32 109.74 362.62 8.84 1970.37
hw 8.96 2.11 5.00 13.97 58.09 12.08 30.26 89.06 110.36 345.68 7.55 2199.72
nav 8.56 1.96 4.90 12.28 57.73 12.05 33.04 89.01 105.81 343.72 9.96 1807.61

equisize 100

VAR 88.78 9.19 72.44 113.82 89.18 6.75 77.10 117.81 322.52 573.78 124.95 3100.75
ar2 9.62 3.28 3.98 29.19 62.44 11.30 37.02 105.59 110.14 326.57 12.36 1791.10
arima212 14.34 13.80 3.98 104.21 58.99 10.99 27.54 100.18 248.45 760.90 4.77 7434.31
garch 10.17 3.25 4.67 30.55 60.34 11.51 37.51 102.28 117.15 348.42 11.55 1857.00
hw 10.11 3.21 3.99 29.70 57.09 11.11 33.59 93.20 130.36 393.31 7.59 2327.77
nav 9.82 3.30 4.09 29.56 58.03 11.25 37.70 97.96 115.34 341.69 12.71 1813.71

equitemp 50

VAR 81.77 25.33 58.39 194.60 83.83 7.73 68.41 118.07 196.13 62.50 118.48 374.17
ar2 21.53 20.59 5.01 158.45 73.99 10.65 38.71 102.43 109.47 146.13 9.49 712.35
arima212 16.78 16.69 3.70 97.46 70.75 12.32 43.21 108.57 92.33 89.39 8.31 715.96
garch 17.80 14.70 7.43 89.54 71.80 11.52 38.86 104.51 51.23 44.37 8.60 602.22
hw 13.09 15.22 3.20 95.26 71.60 11.06 39.99 114.96 62.94 55.93 11.34 683.62
nav 15.57 14.30 5.14 86.81 68.01 11.45 37.58 102.64 50.92 44.47 8.69 603.81

equitemp 75

VAR 82.69 17.55 58.18 138.38 87.16 9.24 76.30 119.53 168.72 38.68 121.04 304.63
ar2 9.97 5.13 5.40 36.72 56.89 11.09 34.16 80.91 29.74 20.61 6.99 109.49
arima212 13.09 7.58 4.83 45.64 56.40 10.88 31.15 80.06 28.55 21.01 9.96 117.09
garch 10.29 5.20 5.57 37.43 57.75 10.70 36.07 81.65 30.40 21.96 11.38 109.56
hw 10.46 5.48 5.44 42.08 56.11 10.54 32.25 80.97 29.30 21.49 8.49 128.28
nav 10.14 5.07 5.48 36.46 56.96 11.07 35.75 80.38 29.70 20.53 11.37 109.42

equitemp 100

VAR 85.70 21.55 63.34 180.27 159.86 154.56 77.71 708.27 186.89 63.38 106.26 610.55
ar2 12.43 6.81 3.96 36.83 110.88 153.37 35.24 705.31 36.01 36.65 12.33 302.98
arima212 11.99 6.44 4.51 39.59 101.22 126.07 31.75 615.20 33.83 37.01 2.35 313.23
garch 12.71 6.84 5.37 36.80 114.21 162.07 35.91 736.41 36.00 36.62 12.69 302.43
hw 12.09 6.27 4.00 37.07 100.73 128.02 17.49 615.20 36.10 37.83 9.05 302.09
nav 12.63 6.86 5.32 36.33 113.56 160.20 35.94 736.41 36.15 36.82 12.64 304.22

Table 4: Overview of the mean percentage error in terms of entropic relevance for the non-
reduced DFGs for datasets BPI 12, sepsis, and RTFMP. Best (lowest) value indicated per col-
umn and aggregation/intervals combination in red, blue colour coding indactes higher (worse)
values.

reduction which is node-based (i.e. only the Q2/Q3 percentile of nodes in terms
of frequency is retained). The reduction takes place after the full DFG has been
forecasted. Hence, we obtain a measure of accuracy in terms of the discrepancy
of the actual and forecasted model behaviour. Using different levels of aggrega-
tion also balances recall and precision, as aggregated DFGs are less precise but
possibly less overfitting. The results can be found in Tables 4 to 7. NAs/NaNs
are reported when the algorithms did not converge, no data was available (e.g.
sepsis for the 75-100 equitemporal intervals).

When no reduction to the DFGs is applied, the summary statistics over the
10 cross-validation folds show that, on average, it is possible to have an error
rate below 10% to 15% for all aggregation types and number of intervals used
for the training set for BPI12 and BPI17. For the Italian helpdesk event log
the errors are between 13% and 34% for the best-performing models. For the
sepsis log, errors are between 57-100% on average for the best-performing model
with high standard deviations. For the RTFMP logs, the errors are over 100%
for the equisize aggregation, but not the equisize aggregation, with mean errors
between 28 and 51%.

Overall, the difference between equisize and equitemp aggregation is smaller
for BPI12, BPI17, BPI18 (except when 100 intervals are used), sepsis, and the
Italian helpdesk log. For RTFMP, the equitemp aggregation performs better
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BPI17 Italian BPI18
aggregation intervals technique mean std min max mean std min max mean std min max

equisize 50

VAR 112.68 4.91 103.46 120.41 139.25 24.36 106.69 210.14 85.46 10.87 63.97 111.84
ar2 6.54 2.33 3.17 13.88 23.00 10.92 4.38 62.34 542.70 1599.48 42.29 21666.56
arima212 18.84 22.25 2.76 105.08 23.18 10.95 3.23 50.81 326.00 278.98 51.43 2066.30
garch 6.61 2.58 3.06 15.95 21.68 10.15 7.16 45.14 316.03 274.01 54.18 2072.31
hw 6.74 2.45 2.44 15.00 22.04 10.16 3.45 49.81 329.31 290.54 23.69 2058.44
nav 6.53 2.39 2.41 14.67 22.08 10.08 7.89 45.14 278.43 169.98 43.63 706.46

equisize 75

VAR 106.34 4.88 92.61 114.15 143.36 15.50 113.13 173.80 86.98 6.45 75.51 103.85
ar2 35.25 66.48 2.80 393.70 23.38 17.21 7.24 122.01 241.23 247.02 19.16 1153.25
arima212 8.54 2.86 3.17 16.90 15.04 5.39 3.72 34.30 274.73 281.29 20.51 1403.02
garch 8.25 2.92 2.96 14.95 31.95 6.84 21.03 50.19 257.39 256.22 47.29 2085.05
hw 8.21 2.79 2.99 15.00 13.13 4.04 4.16 26.75 318.56 363.47 15.32 2819.24
nav 8.24 2.89 3.01 14.82 21.11 6.61 9.64 44.03 225.10 234.22 39.30 1123.19

equisize 100

VAR 107.80 5.17 95.09 123.71 167.47 74.47 103.79 495.34 89.18 6.75 77.10 117.81
ar2 5.90 2.46 3.01 27.00 29.35 20.24 5.28 105.86 160.97 133.48 38.21 1054.59
arima212 5.79 2.51 2.54 23.77 28.78 20.10 5.47 109.74 245.85 132.92 58.72 963.78
garch 6.26 2.57 3.58 27.32 53.47 27.48 18.77 202.86 194.94 141.55 78.23 803.37
hw 5.87 2.46 3.26 26.50 31.76 20.70 4.69 112.55 311.46 201.63 23.19 1281.15
nav 6.01 2.45 3.54 27.35 30.68 20.30 7.77 107.63 133.19 81.83 62.90 497.39

equitemp 50

VAR 109.56 5.17 99.68 119.07 141.20 17.12 107.64 174.88 83.83 7.73 68.41 118.07
ar2 8.23 5.94 2.71 46.27 23.53 10.87 4.79 46.27 nan nan nan nan
arima212 15.29 18.60 3.76 90.33 22.18 10.28 5.55 57.02 224.07 110.67 4.75 732.36
garch 7.83 2.99 4.01 19.54 23.35 10.77 6.17 46.98 nan nan nan nan
hw 7.02 2.99 3.18 19.35 22.60 11.29 4.07 53.29 230.04 90.34 132.78 439.18
nav 7.10 2.89 3.44 18.71 23.38 10.79 7.21 46.89 nan nan nan nan

equitemp 75

VAR 102.95 5.67 88.52 115.82 172.40 61.99 88.45 467.22 87.16 9.24 76.30 119.53
ar2 47.42 97.11 3.25 475.89 27.55 26.78 3.01 174.96 787.09 1298.30 65.95 9230.37
arima212 9.09 3.51 3.17 21.84 25.34 20.00 2.15 120.47 278.41 155.15 90.80 1001.49
garch 8.09 2.89 3.19 17.54 41.74 18.41 17.60 110.58 282.05 171.57 87.70 990.92
hw 8.27 2.93 2.34 18.02 19.96 19.68 2.45 141.88 251.51 159.76 58.06 1203.91
nav 8.04 2.85 3.28 17.25 26.56 19.59 8.70 110.64 223.44 172.12 71.61 1314.16

equitemp 100

VAR 107.76 8.31 92.05 145.53 130.46 35.64 90.24 515.18 159.86 154.56 77.71 708.27
ar2 7.93 7.86 2.97 60.95 35.09 13.97 21.86 179.18 368.73 1045.55 39.00 12059.52
arima212 9.52 12.54 2.83 77.44 34.14 15.88 16.68 186.61 166.21 163.37 37.50 967.42
garch 12.06 7.89 6.62 62.59 50.77 12.82 30.15 147.94 283.94 629.02 115.60 7014.30
hw 7.18 7.26 2.07 58.68 34.06 12.68 18.65 136.92 173.25 172.96 56.13 977.89
nav 8.19 8.33 3.44 61.01 35.46 11.07 24.07 151.50 200.49 624.88 57.44 6981.11

Table 5: Overview of the mean percentage error in terms of entropic relevance for the non-
reduced DFGs for datasets BPI 17, Italian helpdesk, and BPI 18. The colour coding is similar
to Table 4.

which might have to do with the very spread-out occurring of events in the log
with events spread out evenly over the recording history, or the very low average
trace length.

The models that score best on average include the Holt-Winters’ model, AR
model, and sometimes the naive forecast. In the latter case, however, the results
of the other models are similar which does not hold for the former case. Inter-
estingly, the VAR models perform worse than all other models except for the
BPI18 dataset where it achieves the lowest mean error and standard deviation
of all techniques. This indicates that, in a setting when a very high number of
activities is present and traces are longer, modelling the correlations among the
directly-follows time series seems to become important.

The average error rates after a 50% reduction of the DFGs are reported in
Table 6. The error rates drop to the 5-20% range for BPI12, BPI17, and sepsis
(except for 100 intervals/equitemp), and the 11-20% range for Italian. Similar
100%+ rates for RTFMP with much worse results for the equitemp aggregation
are recorded, next to a jump to the 145-282% range for BPI18. For BPI17,
many NaNs are recorded which is due to the fact that the ER computation is
hampered by non-fitting models which are reduced to an extent that replaying
traces over them is not possible. In this case, however, VAR models perform
best. For the other settings, AR/HW models perform well with good results.

When a 75% reduction is applied as in Table 7, the error results go up for
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aggregation equisize equitemp
intervals technique BPI12 BPI17 BPI18 Italian RTFMP sepsis BPI12 BPI17 BPI18 Italian RTFMP sepsis

50

VAR 32.57 5.79 391.71 195.32 396.28 12.96 nan nan 233.55 200.84 177.60 11.72
ar2 5.23 nan 546.62 21.10 276.17 7.90 13.23 nan nan 20.23 120.33 6.32
arima212 8.63 nan 338.01 19.91 259.16 7.86 10.68 nan 223.93 20.31 126.95 5.92
garch 4.72 nan 304.34 19.14 301.48 7.96 19.13 nan nan 19.90 77.79 6.16
hw 11.83 nan 335.00 19.14 262.00 7.64 7.18 nan 229.95 19.38 79.98 5.87
nav 7.30 nan 282.67 19.12 303.54 7.86 9.43 nan nan 20.00 77.79 6.01

75

VAR 25.62 6.43 380.13 194.41 299.66 15.44 34.17 nan 290.70 226.33 120.72 10.51
ar2 5.46 nan 269.12 20.93 213.02 8.78 6.59 nan 793.74 22.15 38.23 6.87
arima212 5.77 nan 297.56 13.24 213.23 8.81 8.62 nan 281.25 20.58 38.08 7.54
garch nan nan 274.27 29.99 212.82 9.04 5.56 nan 281.88 36.39 38.15 6.92
hw 8.71 nan 343.31 11.42 209.68 8.12 6.52 nan 245.68 15.21 36.18 6.76
nav 5.44 nan 232.22 19.08 213.22 8.92 6.52 nan 221.28 21.36 38.14 6.79

100

VAR 29.06 19.28 352.40 194.25 129.02 9.56 39.71 93.58 345.67 138.33 138.99 72.74
ar2 5.57 nan 426.38 16.99 36.22 6.33 12.20 nan 368.92 22.35 48.92 71.97
arima212 9.75 nan 265.04 17.11 57.11 5.89 16.36 nan 203.26 20.08 48.79 40.68
garch nan nan 195.73 38.22 36.18 6.56 11.62 nan 300.41 34.45 49.72 68.11
hw 8.19 nan 312.57 19.03 41.28 5.44 11.76 nan 256.30 20.20 50.14 68.96
nav 6.80 nan 145.51 18.28 36.25 6.32 11.88 nan 225.90 21.07 49.64 68.12

Table 6: Overview of the mean percentage error in terms of entropic relevance for the DFGs
with a 50% reduction.

aggregation equisize equitemp
intervals technique BPI12 BPI17 BPI18 Italian RTFMP sepsis BPI12 BPI17 BPI18 Italian RTFMP sepsis

50

VAR 27.70 4.60 361.71 190.52 396.03 11.66 39.03 nan 222.59 196.96 177.41 9.60
ar2 19.75 1.54 521.13 187.47 435.97 10.07 33.91 nan nan 193.56 207.51 10.11
arima212 20.24 1.46 343.66 187.11 405.31 10.21 31.61 nan 223.93 195.34 166.15 9.66
garch 19.77 1.54 328.34 186.98 396.03 10.24 34.25 nan nan 193.17 nan 8.78
hw 19.73 1.52 340.12 186.97 398.52 10.24 31.42 nan 229.95 194.33 172.03 9.45
nav 19.77 1.53 286.83 186.94 391.54 10.20 32.75 nan nan 193.08 nan 9.04

75

VAR 21.06 4.60 351.36 187.05 299.31 11.59 29.03 nan 284.64 219.44 120.43 11.28
ar2 13.75 1.55 305.06 182.30 92.85 10.60 20.84 nan 436.85 215.91 nan 10.88
arima212 13.64 1.50 316.51 182.65 338.36 12.45 20.81 nan 301.97 216.15 101.14 11.20
garch 13.80 1.53 323.75 182.14 299.31 10.66 20.85 nan 280.73 215.80 nan 11.42
hw 13.66 1.58 347.12 181.99 289.34 11.39 20.73 nan 269.60 217.55 nan 11.08
nav 13.82 1.53 273.17 182.28 nan 10.86 20.88 nan 247.11 215.89 nan 10.67

100

VAR 23.88 18.12 279.36 186.91 nan 10.02 33.07 99.91 340.78 133.80 nan 70.71
ar2 16.03 15.71 306.52 181.72 131.30 9.72 23.76 97.73 422.46 128.22 nan 69.73
arima212 17.04 15.75 266.32 182.15 107.36 9.69 23.72 100.63 222.26 134.97 nan 69.77
garch 16.04 15.71 193.54 181.47 nan 9.48 23.76 97.75 234.44 128.19 nan 70.03
hw 16.03 15.75 308.79 182.42 nan 9.50 23.63 97.54 297.85 150.56 nan 70.06
nav 16.07 15.70 149.33 181.80 nan 9.79 23.79 97.72 315.43 128.46 nan 70.10

Table 7: Overview of the mean percentage error in terms of entropic relevance for the DFGs
with a 75% reduction.

BPI12 and the Italian helpdesk logs, stay the same for BPI18, the RTFMP,
and the sepsis event logs, and go down/become computable again for BPI17.
For BPI17 there is a very strong impact on computability of ER with reduced
models, which makes the results less revealing.

The improvement on some event logs after a 50% reduction can be caused
by the fact that fewer variants cause convoluted DFGs and the forecasts are
better capable of predicting the most prevalent paths through the activity graph
without being punished in ER calculations for mistakes for missing activities
and paths. However, when a very strong 75% reduction is made it appears
that most techniques struggle to come up with a model which is replayable and
compatible with ER calculations. Nevertheless, even in this scenario 10-20%
error rates can be found for BPI12, BPI17, and sepsis for both aggregation types.
The ER results are commensurate with the findings in [19], which contains
entropic relevance results for the BPI12, sepsis, and RTFMP logs, indicating
that entropic relevance of larger DFGs is lower (better) for RTFMP/Sepsis, and
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the entropic relevance goes up strongly for reduced models of RTFMP meaning
the drastically improved error rates reported here are for models performing
worse in terms of recall and precision. The entropic relevance for the BPI12 log
is stable for the full and 50% reduced spectrum of DFG sizes as per [19], which
is reflected in the consistently good error rates presented here. This means
that the low error rates reported are produced by the reduced DFGs, which
still score strongly in terms of recall and precision. Matching all results to the
event log characteristics, we notice that the event logs with longer traces with
medium-sized alphabets (>20) such as the BPI12, BPI17, and Italian helpdesk
logs consistently report good results. The BPI18 log’s high number of activities
seems to inflate error rates quickly, which is further aggravated when DFGs
are reduced. Given that DFGs are based on activity pairs, this result is not
surprising. It is interesting to see that in this case multivariate models are
providing an alternative to obtain good error rates. For the sepsis and the Italian
event logs, good error rates are obtained once DFGs are reduced, indicating that
forecasting the low-frequent edges and activities might lead to high error rates
when the alphabet is smaller and traces are shorter, which is potentially also
caused by the lack of precision as witnessed with the RTFMP log.

4.3. Reflection on the statistical analysis

Overall, there exist many scenarios in which process model forecasting is
delivering solid results. For the BPI12, BPI17, Italian, and sepsis event logs,
sub-10% error rates can be achieved both for equisized and equitemporal aggre-
gation combined with model reductions which readers of DFGs typically apply.
In some cases, even a naive forecast is enough to obtain a low error rate. How-
ever, the HW, AR and ARIMA models report the best error rates in most cases.
There does not seem any particular benefit of using heteroskedacity-aware meth-
ods such as (G)ARCH. Nevertheless, results are often close except when fewer
training points are used. Still, we would like to point out that the results from
Tables 4 to 5 do show a wide spread with strongly diverging minimum and
maximum values for most models, datasets, number of intervals, and aggrega-
tion approaches. Especially for the RTFMP and BPI18 event logs the impact
of DF information present in the different folds can lead to massive differences
indicating that most techniques are susceptible to picking up or missing out on
particular, local behavior. Given that these two logs exhibit the highest num-
ber of traces and activities respectively, it is clear that further experimentation
is necessary in terms of choosing the number of intervals (e.g. shorter event
logs might not be suitable for equitemporal aggregation with a high number of
intervals), pre-selecting the number of activity pairs that could result in valid
time series, and parameterize the statistical models. In general, it means that
the application of the techniques should always be accompanied by a thorough
statistical analysis to ensure results are robust to anomalies in the data and in
line with the properties in the event log. In future work, the robustness of fore-
cast algorithms will be further investigated, e.g., via scrutinising the confidence
intervals of the forecasted DF outcomes.
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Finally, it is clear that there is no evident benefit of using any advanced sta-
tistical forecasting approach used dealing with properties such as seasonality,
(long-term) autocorrelation, strong trends, correlation between series, and other
concepts which are modeled by approaches. This means that either the aggre-
gations are not appropriately capturing these concepts, they are not present
in (all) DF time series, or the approaches are not capable of extracting them
appropriately. In future work, the impact of the pre-processing and aggregation
in function of the event log properties will be further investigated to come up
with robust representations of a process model over time, which will allow a
more thorough analysis of what aspects are needed in a forecasting approach to
model (a particular) business process over time.

In this sense, the main contribution of this paper is to provide a blueprint of
what process model forecasting can be by suggesting a shift from the case per-
spective commonly found in predictive process monitoring through the analysis
of model-wide abstractions in the form of a single instantiation which is the use
of DF time series to forecast a DFG. As pointed out in this section, there are
several angles along which extensions and improvements on this paradigm shift,
including the use of stronger modelling approaches and different data aggrega-
tions, can be investigated.

4.4. Visualising process model forecasts

In Section 4.2, we evaluated forecasting results, ensuring the conformance
and interpretability of the predicted process models. To that end, gaining in-
sights from such predicted data remains a difficult task for the analyst. This
section sets off to present a novel visualisation system to aid analysts in ex-
ploring the event logs. The process of designing and implementing the system
started by designing several prototypes that underwent rounds of discussions
between the authors and peers from the process mining domain to mature into
the implemented visualisation system.

The design of the PCE system is shown in Figure 5. It offers an interactive
visualisation system with several connected views. The system is implemented
using the D3.js JavaScript library and is available as an open-source project.9

4.5. User study

In this section we discuss a user study on the perceived usefulness and ease-
of-use of the PCE tool. To this purpose, a user study was performed with twelve
participants with extensive knowledge of process mining and its tooling and who
are familiar with DFGs. Of these 12 participants, 5 were from industry with
either a consultancy or software engineering background which makes these re-
sults valid within a practitioner’s context. The other 7 participants were from
academia and were either in a PhD researcher or postdoc position which ad-
vanced knowledge of process mining. Their understanding of DFGs was verified
using a series of introductory questions at the start of the study.

9https://github.com/yesanton/Process-Change-Exploration-Visualizations
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Figure 5: Process Change Exploration (PCE) system. (a) shows Adaptation Directly-Follows
Graph (aDFG) view. (b) shows the Timeline view with brushed regions view. Users can brush
one or more regions on this graph in order to filter the scope of the analysis (b.1, and b.2).
Two additional controls in (c) show the activity and path sliders.

The user study setup required users to answer questions both regarding the
longitudinal aspects of the PCE tool, i.e., whether the aDFG presentation is use-
ful and easy to use, as well as whether the forecasting functionality can be used
towards longitudinal analysis of processes. In the first question the user was
tasked with describing all major changes between two DFGs from two histori-
cal (i.e. the training data) time spans. Besides, they had to answer questions
about precise changes, e.g., whether a particular directly-follows relation oc-
curred more or fewer times between the two time spans under scrutiny, to verify
their use of the tool was commensurate its intended use. A second question was
included which had a similar form but was focused on identifying changes be-
tween a historical DFG (from the training time span) and a forecasted DFG. All
participants were capable of answering the questions correctly, indicating that
their comprehending the tool was sufficient to answer the questions regarding
its perceived usefulness and ease-of-use was adequate.

After the questions introduced the users to the functionality of the tool,
the perceived usefulness and ease-of-use were tested using questions on a Likert
scale of 1 to 7 using the Technology Acceptance Framework (TAM) with six
questions per construct [41, 42] as detailed in Table 8. The results are included
in Figure 6.

The statistical evidence indicates the users attributed the tool to both a
high perceived usefulness and ease-of-use as demonstrated by the distribution
with a median of 6 or over out of a maximum of 7 for all questions. There
are no subquestions with significantly lower particular scores, indicating that
the participants are unanimous both in terms of usefulness and ease-of-use.
Especially Q1 and Q5 for ease-of-use obtained high scores, indicating the PCE
tool is very easy to pick up quickly.

Besides questions focused on understanding the functionality, open feedback
was collected on both the positive aspects of the tool as well as points of im-
provement.

Most users appreciated the clear interface, which was mentioned in five out
of six cases, as the PCE tool builds on top of the DFG representation which
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(a) Perceived usefulness (b) Perceived ease-of-use

Figure 6: Boxplots of the results of the questions. The orange lines indicate the median values.

Perceived usefulness Perceived ease-of-use

1 Using the PCE tool to analyze the
event log would enable me to ac-
complish my analysis tasks more
quickly.

Learning to operate the PCE tool
would be easy for me.

2 Using the PCE tool would improve
my performance in analyzing the
event log.

I would find it easy to get the PCE
tool to do what I want it to do.

3 Using the PCE tool would increase
my analysis productivity.

My interaction with the PCE tool
would be clear and understandable.

4 Using the PCE tool would enhance
my effectiveness on the analysis job.

I would find the PCE tool to be flex-
ible to interact with.

5 Using the PCE tool would make it
easier to do my analysis job.

It would be easy for me to become
skillful at using the PCE tool.

6 I would find the PCE tool useful for
my analysis job.

I would find the PCE tool easy to
use.

Table 8: Questions used in the study.

is common in other DFG process mining tools such as ProM10 and Disco11

and provides an intuitive extension in this respect. Besides, the users liked the
seamless integration of comparing both actual and forecasted DFGs.

Majority of the participants point out the utility of visualising and com-
parison of the two time frames. Participant P1 likes “The ability to visualise
and compare different timeframes in the event log without having to create two
separate DFGs”, while P2 states “I can analyse two time frames, which might
be helpful to compare e.g. before and after process changes.”

Points of improvement, besides minor implementation details such as date

10https://www.promtools.org/doku.php
11https://fluxicon.com/disco/
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selection precision and arrow types, include the desire of users to be able to
store time spans/enact different scenarios, adjusting the forecast on the go, and
obtaining relative instead of absolute figures for the activity and directly-follows
occurrences.

However, besides the inclusion of relative instead of absolute figures, none
of these issues impede the overarching functionality of being able to compare
DFGs between two time spans in detail drastically. Hence, based on both the
quantitative and qualitative feedback the tool is deemed useful and easy to use.
Participant P4 summarizes that PCE system is a “novel way of interacting with
data”, while P6 states that the tool has “nice user interface.”

5. Conclusion

In this paper, we presented the first genuine approach to forecast a process
model as a whole. To this end, we developed a technique based on time series
analysis of DF relations to forecast entire DFGs from historical event data. In
this way, we are able to make promising forecasts regarding the future develop-
ment of the process, including whether process drifts or major changes might
occur in particular parts of the process. The presented forecasting approach
is supported by the Process Change Exploration system, which allows analysts
to compare various parts of the past, present, and forecasted future behaviour
of the process. Our empirical evaluation demonstrates that, most notably for
reduced process models with medium-sized alphabets, we can obtain below 15%
MAPE in terms of conformance to the true models. In a user study on the
PCE system, it was shown that adding the longitudinal and forecasting aspect
of Adaptation Directly-Follows Graphs was desirable for users and the PCE
system ease to use and useful for its purpose.

In future research, we plan to evaluate the use of machine learning techniques
for process model forecasting. More specifically, we aim at using recurrent neural
networks or their extension in long short-term memory networks (LSTMs) and
transformer-based architectures, as well as hybrid methods or ensemble forecasts
with the traditional time series approaches presented here. Furthermore, we
want to explore opportunities for enriching our forecasted process models with
confidence intervals by calculating the entropic relevance at different confidence
levels and reporting the confidence intervals in the PCE system.
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